
UCRL-TR-209462

Oracle Log Buffer Queueing

A. S. Rivenes

February 7, 2005

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

 This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Logbuffer_Queueing21.doc i
Version 2.1, December 10, 2004

LAWRENCE L IVERMORE NAT IONAL LABORATORY

Oracle Log Buffer Queueing

Andy Rivenes
Originally investigated, December 10, 2003

 Lawrence Livermore National Laboratory
7000 East Avenue • L-089
Livermore, CA 94551

Logbuffer_Queueing21.doc ii
Version 2.1, December 10, 2004

Table of Contents

Introduction ...3
Testing Overview...3

Testing Sources..3
Hardware Configuration ..4

File System Layout ..4
Linux Setup ..5
Oracle Setup...5
Testing Performed ...6

Overview..6
Tests Performed ...7
Additional Test Information...8
Test Result Summary ...9

Findings ..9
Commit Throughput...9
CPU Capacity ..13
Entity Throughput Scalability ..17
Additional Issues..19

Single Job Tests..19
Raw Log File Throughput ..19

Recommendations..19
Solid State Disk..19
Physical Memory ...19
Scalability ..19

Parameter Settings ..21
init.ora Settings ..21

References ..22

Logbuffer_Queueing21.doc Page 3
Version 2.1, December 10, 2004

Introduction

The purpose of this document is to investigate Oracle database log buffer queuing and its affect on
the ability to load data using a specialized data loading system. Experiments were carried out on a
Linux system using an Oracle 9.2 database. Previous experiments on a Sun 4800 running Solaris had
shown that 100,000 entities per minute was an achievable rate. The question was then asked, can we
do this on Linux, and where are the bottlenecks? A secondary question was also lurking, how can
the loading be further scaled to handle even higher throughput requirements?

Testing was conducted using a Dell PowerEdge 6650 server with four CPUs and a Dell PowerVault
220s RAID array with 14 36GB drives and 128 MB of cache. Oracle Enterprise Edition 9.2.0.4 was
used for the database and Red Hat Linux Advanced Server 2.1 was used for the operating system.
This document will detail the maximum observed throughputs using the same test suite that was
used for the Sun tests. A detailed description of the testing performed along with an analysis of
bottlenecks encountered will be made. Issues related to Oracle and Linux will also be detailed and
some recommendations based on the findings.

Testing Overview

The testing was conducted by splitting up the data provided by each source into nine relatively equal
groups. The loading code was then run for each group simultaneously. This translated into nine Java
loading processes running against the Oracle database. Once all nine jobs were running at full
utilization (as evidenced by "top") three simultaneous 5 minute "snapshots" were taken. The first
was an extended SQL trace of one of the nine jobs, the second was a beginning snapshot using a
SQL query based on loading info within the application schema, and the third was a "Statspack"
beginning snapshot. Once 5 minutes had elapsed from the start of the extended SQL trace, the trace
was stopped and another application snapshot and a "Statspack" snapshot were taken. In several
tests a second five minute interval was analyzed, using a different load job for the extended SQL
trace.

Initially all nine jobs were traced, but once it was established that all nine jobs had similar resource
and execution profiles this was cut back to just one as described above. As described, one or two 5
minute intervals were observed for each test. These were conducted after initial startup and once the
jobs were running at a relative "steady state". On several tests, a "late" interval observation was
conducted to see if the resource or execution profile was different after a significant amount of time
had passed (e.g. to attempt to insure that no caching or other phenomenon affected the early part of
the test) and it was found to be consistent throughout the test run(s).

Testing Sources

Three testing sources were used during each test run. The primary test source was the capturing of
extended SQL trace data for one or more of the jobs running in the test. Typically a five minute
interval was captured and the resulting trace file was then profiled with the Hotsos Profiler. From
that output the "Interval Resource Profile" was used to evaluate the response time components and
their time contribution. Figure 1 shows the interval resource profile for one of the tests performed
(e.g. test 7a).

Logbuffer_Queueing21.doc Page 4
Version 2.1, December 10, 2004

Interval Resource Profile
 ------------- Duration Per Call -------------
Response Time Component Duration # Calls Avg Min Max
----------------------------- --------------------- --------- ----------- ----------- -----------
CPU service 239.660000s 78.2% 220,524 0.001087s 0.000000s 3.490000s
log file sync 38.596698s 12.6% 13,240 0.002915s 0.000002s 0.039492s
unaccounted-for 17.004281s 5.5%
SQL*Net message from client 4.956845s 1.6% 390 0.012710s 0.000091s 0.140028s
buffer busy waits 2.499641s 0.8% 2,504 0.000998s 0.000001s 0.078763s
latch free 1.771481s 0.6% 490 0.003615s 0.000001s 0.038723s
SQL*Net more data from client 1.484256s 0.5% 6,933 0.000214s 0.000005s 0.114970s
enqueue 0.487827s 0.2% 255 0.001913s 0.000001s 0.035624s
log file switch completion 0.023084s 0.0% 2 0.011542s 0.008676s 0.014408s
SQL*Net more data to client 0.006008s 0.0% 39 0.000154s 0.000017s 0.000742s
direct path read (lob) 0.004954s 0.0% 585 0.000008s 0.000000s 0.001991s
SQL*Net message to client 0.002308s 0.0% 390 0.000006s 0.000001s 0.000033s
db file sequential read 0.002193s 0.0% 27 0.000081s 0.000038s 0.000109s
direct path write 0.000904s 0.0% 78 0.000012s 0.000001s 0.000037s
buffer deadlock 0.000054s 0.0% 22 0.000002s 0.000001s 0.000008s
----------------------------- --------------------- --------- ----------- ----------- -----------
Total 306.500534s 100.0%

Figure 1. Interval resource profile, test 7a, file 15068.

The second test source was obtained from a snapshot procedure that is part of the application
schema. This information approximates the number of "entities per minute" being loaded into the
database for a given time interval. The third test source was obtained from Oracle's Statspack utility.
This utility captures database statistic and wait event information for a given time interval. The
information used from this utility was purely statistic based and included the number of system wide
user commits and redo blocks written.

Hardware Configuration

As stated in the introduction, testing was conducted on a 4-way Dell PowerEdge 6650 server with a
PowerVault 220s providing disk array storage. The PowerEdge server had 4 Intel Xeon 2.5 GHz
CPUs with 1 MB cache, 16 GB of memory, 2 SCSI interfaces, and 1 NIC.

The PowerVault 220s had 14 36GB drives and 128MB of cache. The array was divided into 3 RAID
1 volumes for a total of 6 disks, and 1 RAID 1+0 4 disk wide volume for a total of 8 disks. Initially
all logical drives were set with "write-thru" caching. The RAID 1 volumes were set with 64K stripe
widths and the RAID 1+0 with 128K stripe width.

File System Layout

The following basic file system layout was used:

Mount
point

Volume
type

File
system

Usage

/oracle RAID 1 ext3 used for Oracle software (e.g. ORACLE_HOME), admin
directories, local directories including application test data, and
one control file (e.g. /oracle/oradata/SID/control02.ctl)

Logbuffer_Queueing21.doc Page 5
Version 2.1, December 10, 2004

/ora01 RAID 1+0 ext3/raw used for Oracle database files, other two control files. Raw and

file system redo was tested, but not significantly different than
RAID 1.

/ora02 RAID 1 ext3/raw Used for redo log files. Was used for database files when the
RAID 1+0 volume was used for redo log files.

/ora03 RAID 1 ext3/raw Used for redo log files. Was used for database files when the
RAID 1+0 volume was used for redo log files.

Linux Setup

Red Hat Advanced Server 2.1 Linux was installed with the enterprise kernel (e.g. Linux 2.4.9-
e.3enterprise). It was initially thought that Oracle would be set up with large memory support (e.g.
the target was a 12 GB SGA) and so the system was configured to allow this by using a shared
memory file system (e.g. /dev/shm (shmfs)). No special kernel parameters were set other than those
required by Oracle, specifically for semaphores and shared memory.

This test wasn't meant to be a comprehensive test on file system performance. However, because
the resource profile of the test jobs had a large "log file sync"1 component, the redo log setup was
given particular scrutiny. Based on industry information/recommendations two flavors of file
systems were tested for online redo log files, raw devices and ext3 file systems. For all other database
files just the ext3 file system was used.

It is worth noting that several sources were found that indicated that raw device performance was
sub-optimal in Linux and that the ext3 file system performed best for Oracle databases. In addition
to raw vs. ext3 file systems, asynchronous I/O was also tested. Since Linux does not support file
system direct I/O (e.g. unbuffered file system I/O) that feature could not be tested.

Once the redo log file I/O was identified as a significant bottleneck we also wanted to experiment
with the speed of a solid state disk device in order to see if the elimination of the log file sync
bottleneck would indeed drive up CPU usage, or result in some other unforeseen bottleneck. Since
we didn't have access to a solid state disk system, this was simulated using "RAM" disks. This would
not be an acceptable production setup since RAM disks would not protect from an instance failure
with the loss of the UNIX memory system, but they were sufficient to simulate the latency and
throughput of a solid state disk.

Oracle Setup

Oracle was installed using version 9.2.0.1 and patch set 9.2.0.4. A basic database was created with
the following options:

� Enterprise Edition

1 The Oracle wait event "log file sync" occurs when a user session COMMITs (or rolls back), the sessions redo information needs to
be flushed to the redo logfile. The user session will post the LGWR to write all redo required from the log buffer to the redo log file.
When the LGWR has finished it will post the user session. The user session waits on this wait event while waiting for LGWR to post
it back to confirm all redo changes are safely on disk. – Oracle Note: 34592.1

Logbuffer_Queueing21.doc Page 6
Version 2.1, December 10, 2004

� Oracle JVM

� Oracle Spatial

� Oracle InterMedia

� Oracle Text

� Oracle XML DB

Initially the database was installed with two 1 GB redo log files on dedicated RAID 1 devices (e.g.
/ora02 and /ora03), and all database files on a RAID 1+0 volume (e.g. /ora01). A total of three
control files were used, one control file was located on the /oracle volume along with the
ORACLE_HOME software and ORACLE_BASE/admin directories, and the other two were
located on the /ora01 volume (e.g. RAID 1+0).

The Oracle kernel was linked with the "async_on" option and the "disk_asynch_io" init.ora
parameter was set to true initially. The SGA was set to approximately 800 MB (e.g. 400MB for
database block buffers, 400 MB for the shared pool, and 1 MB for the log buffer). The database was
created with a 4K block size to match the file system block size, and no additional block sizes or
buffer pools were used. The init.ora option "pga_aggregate_target" was used instead of any hash or
sort area sizing. See the "Parameters" section for a list of the non-default init.ora parameters used.

Testing Performed

Overview

Several initial tests were run and in most cases the individual job resource profile consisted of 60% -
70% CPU service and 10% - 20% "log file sync" or commit time. The rest of the time was spent
among other wait events of less than 5% of total response time. From these initial tests it was clear
that the loads consumed a large amount of CPU and waited a significant amount of time for
commits. The actual workload consisted of a large number of inserts with additional selects and
updates motivated by the inserts. In speaking with the principal developer, he concurred with this
workload analysis.

In a typical response time optimization engagement, my recommendation would be to reduce the
amount of CPU time and commits being performed. This follows the Hotsos Method R2 approach
of observing Amdahl's law and reducing the largest time consumers in descending order. However,
in speaking with the application developer, the code is complex and will be costly to modify. He is
aware of the limitations and enhancements are being planned. In the meantime, our goal remained
unchanged, but the code was not changeable. This drove most of the testing to find ways to reduce
the commit time (e.g. the duration of the log file sync wait events) in order to maximize CPU service
time and thereby load the maximum number of entities possible. As an additional exercise, I made
an attempt to quantify the theoretical maximums that might be possible given additional CPUs vs.
additional nodes based on the queuing characteristics of the application (e.g. arrival rate and relative
service times).

2 Optimizing Oracle Performance, Pg. 20

Logbuffer_Queueing21.doc Page 7
Version 2.1, December 10, 2004

Tests Performed

Twelve recorded tests were performed in all. The following describes the goals and results for each
test:

Test Environment Goals Results

1 1 job test using file
system based redo logs

Attempt a baseline
single user test and
establish the maximum
throughput for a single
job.

Questionable validity. The commits per
CPU second are twice the number of
system wide commits per second that
was recorded by Statspack.

2 9 job test using file
based redo logs.

Attempt an initial load
test.

Showed that log file sync times were
indeed a significant bottleneck to
increased throughput.

3 1 job test using RAM
based redo log files.

Show the fastest
possible loading in the
absence of any
significant bottlenecks.

Clearly showed that the latency of log
file syncs was inhibiting throughput.

4 9 job test using RAM
based redo log files.

Attempt the highest
throughput load
possible.

Achieved 100K entities per second at
100% CPU utilitization. log file sync
accounted for only 5% of individual
job response time and the bottleneck
moved to the CPUs.

5 1 job test using RAID
1, file system based
redo logs with
asynchronous I/O.

Show the highest disk
based throughput.

Showed a more reasonable correlation
between system commit rate and
individual job commit rates. I felt this
test might have unduly benefited from
the array cache so a 2 and 4 job test
were performed later.

6 9 job test using RAID
1, file system based
redo logs with
asynchronous I/O.

Show the highest
loaded disk based
throughput.

Achieved 92K entities per minute. This
is only 8% less than the max. Since the
commit rate was the bottleneck the
CPUs were not driven to 100%.

7 a/b 9 job tests using RAID
1, file system based
redo logs with async
I/O disabled in Oracle.

Show any differences
between synchronous
and asynchronous
I/O.

A slight improvement over async I/O.

Logbuffer_Queueing21.doc Page 8
Version 2.1, December 10, 2004

7 c/d 9 job tests using RAID

1, file system based
redo logs with async
I/O disabled in Oracle
and the array write
back cache set to write
thru.

Show the benefit of
the array cache for log
writes.

Throughput was severely hampered.
Clearly some kind of caching provides
a huge benefit.

8 9 job test using RAID
1, file system based
redo logs with
asynchronous I/O.

Verify Test 7 a/b
results.

Some problems were encountered
performing the test, but the results
were still impressive. The surprise was
that async I/O hurt throughput.

9 9 job test using RAID
1, raw based redo log
files with async I/O.

Show if raw based redo
logs performed better.

Surprisingly raw redo log files
performed worse. Normally we would
expect them to be more efficient, but
apparently Linux's raw I/O
implementation is sub-optimal.

10 9 job test using RAID
1, raw based redo log
files with synchronous
I/O.

Same as Test 9, but
with synchronous I/O.

There didn't appear to be a big
difference, but synchronous I/O did
appear to be worse. Since Linux does
support kernelized asynchronous I/O
this might be noteworthy if raw I/O
was as fast as file system I/O.

11 2 job test using RAID
1, file system based
redo logs with async
I/O disabled in Oracle.

A 2 job test to try to
show throughput with
a minimum of queuing
or load interference.

Numbers were slightly slower than the
1 user test, but appeared to validate
baseline numbers.

12 4 job test using RAID
1, file system based
redo logs with async
I/O disabled in Oracle.

A 4 job test to try to
show throughput with
a some queuing. The
hope was to validate
the queuing models
with additional data
points.

Began to show degradation. Another
datapoint to validate the queuing
influences.

Additional Test Information

Data files were placed on a RAID 1+0 volume (e.g. /ora01). Initially it was thought that there would
be I/O bottlenecks to the database files. As it turned out the only I/O bottleneck was with the redo
log files. Tests were performed with redo log files on the RAID 1+0 volume with both raw and ext3
file systems. Results were not significantly different than RAID 1, and given the RAID 1+0 expense,
it was decided not to pursue additional testing. In fact, RAID 1+0 is probably not necessary other
than for the convenience of a large data file mount point. This application could probably make use
of RAID 5 for the database files and save resources with no appreciable impact on performance.

Logbuffer_Queueing21.doc Page 9
Version 2.1, December 10, 2004

Test Result Summary

NE Stats

Test
Number Date Start Time Duration (sec) Test Description Trace File Commits

CPU
Service

Commits/
CPU sec

CPU
Interval %

Number of
log file
sync

Avg
duration

log file
sync
Interval %

Statspack
Interval commits/sec Redo blks/sec

Redo blks
/ commit entities/minute

1 11/24/03 12:32 323 1 job, 31973 18,030 175.82 102.55 54.5% 18,308 0.007459 42.3% 14 - 15 55 1,084.1 19.7 13,090.91
2a 11/24/03 12:43 340 1098 13,059 238.44 54.77 70.2% 12,869 0.005745 21.8% 16 - 17 355.9 6,697.3 18.8 84,449.57
2b 11/24/03 12:50 364 1091 12,566 236.22 53.20 64.9% 13,236 0.007934 28.8% 17 - 18 350.3 6,788.2 19.4 83,358.78

3 11/24/03 17:15 283
1 job test, redo on
RAM disks 3291 27,593 272.80 101.15 96.5% 26,783 0.000038 0.4% 19 - 20 97.4 1,917.2 19.7 23,294.12

4a 11/24/03 17:36 272 RAM disk redo 7107 10,830 232.97 46.49 85.9% 9,493 0.001593 5.6% 21 - 22 422.4 8,299.2 19.7 100,751.68
4b 11/24/03 17:41 270 2nd 5 minutes 7097 10,136 228.40 44.38 84.8% 8,583 0.001464 4.7% 22 - 23 409.7 8,137.3 19.9 98,006.69

5 11/25/03 10:44 300 1 job test, RAID 1, fs 11265 25,117 246.18 102.03 82.3% 25,624 0.001091 9.3% 24 - 25 83.4 1,639.0 19.7 Missing

6a 11/25/03 10:55 287
RAID 1 redo, fs,
async 12848 10,658 227.46 46.86 79.5% 10,030 0.003744 13.1% 26 - 27 389.7 7,557.9 19.4 92,178.34

6b 11/25/03 11:00 257 2nd 5 minutes 12854 9,360 206.12 45.41 80.4% 8,552 0.003918 13.1% 27 - 28 382.7 7,424.4 19.4 91,452.63

7a 11/25/03 13:28 307
RAID 1 redo, fs, no
async 15068 11,924 239.66 49.75 78.2% 13,240 0.002915 12.6% 29 - 30 397.1 7,634.8 19.2 94,390.24

7b 11/25/03 13:33 705 2nd 5 minutes 15074 12,822 272.04 47.13 38.6% 13,864 0.003116 6.1% 30 - 31 394.1 7,586.1 19.3 93,928.93

7c 11/25/03 13:57 47

RAID 1 redo, fs, no
async, write thru on
array (no cache) 17192 933 20.92 44.60 45.2% 1,053 0.008425 19.2%

(only 1 interval
for both tests)

7d 11/25/03 13:58 296 Same test as 7c 17174 9,339 145.14 64.34 49.1% 9,024 0.012749 38.9% 32 - 33 297.5 5,509.8 18.5 70,464.00

8a 12/1/03 11:30 279
RAID 1 redo, fs, no
async 6725 10,065 215.64 46.68 77.5% 9,765 0.002878 10.1% 34 - 35 383.1 7,551.7 19.7 91,722.77

8b 12/1/03 11:54 111

Note: This was taken
at the end after some
jobs had finished! 6727 5,998 93.79 63.95 85.0% 5,575 0.001493 7.5% 37 - 38 277.8 5,693.6 20.5 30,789.89

9a 12/1/03 17:14 240
RAID 1 redo, raw,
async I/O 3511 8,648 168.10 51.45 70.2% 8,134 0.007014 23.8% 40 - 41 374.2 7,176.9 19.2 89,727.27

9b 12/1/03 17:18 362 2nd 5 minutes 3513 12,055 215.44 55.96 59.6% 13,685 0.007986 30.2% 41 - 42 342.1 6,645.7 19.4 81,391.30

10a 12/1/03 18:01 305
RAID 1 redo, raw, no
async 6875 11,173 203.92 54.79 66.9% 11,518 0.007162 27.1% 43 - 44 368.9 6,955.4 18.9 87,662.34

10b 12/1/03 18:06 394 6883 14,076 256.31 54.92 64.9% 12,386 0.007419 23.3% 44 - 45 334.6 6,358.9 19.0 79,534.88

11a 12/2/03 16:48 24
2 job test, RAID 1
redo, fs, no async 3347 1,996 20.83 95.82 86.3% 2,340 0.001393 13.5% 46 - 47 176.8 3,412.60 19.3 41,907.12

11b 12/2/03 16:43 299
2 job test, RAID 1
redo, fs, no async 3349 24,075 262.64 91.67 87.9% 21,767 0.001286 9.4% 47 - 48 138.9 2,709.70 19.5 33,237.21

12a 12/2/03 17:01 271
4 job test, RAID 1
redo, fs, no async 4871 16,752 224.44 74.64 83.0% 18,550 0.001941 13.3% 49 - 50 276.6 5,299.40 19.2 65,981.42

12b 12/2/03 16:56 296
4 job test, RAID 1
redo, fs, no async 4874 17,041 239.45 71.17 81.1% 17,463 0.002376 14.0% 50 - 51 265.9 5,100.10 19.2 63,476.29

(only 1 interval for both tests)

StatspackTest Details Trace file

Findings

Commit Throughput

Based on initial tests performed, the main testing emphasis was placed on reducing commit time and
therefore increasing commit throughput. The individual job average duration times for log file sync
varied with load, and I believe this was due primarily to queuing and the caching constraints in the
RAID array. The best fully loaded log file sync times achieved with disk devices was 2.9 milliseconds
for average duration. At the system measurement level this translated to 2.5 milliseconds. I believe
this slight discrepancy can be explained if we take in to account a slight overlap in I/Os since there
were 9 independent jobs running. While it is true that this test did not take advantage of
asynchronous I/O (and was still faster), if we look at the asynchronous I/O tests we see an even
greater disparity between individual job duration times and overall system throughput (e.g. 3.7
milliseconds vs. 2.6 milliseconds). My best guess is that for LGWR writes the asynchronous code
path consumes more time than performing the writes synchronously.

By far the best throughput was obtained using ram disks for redo logging (e.g. tests 3 and 4). This
allowed the CPU utilization of the machine to approach 100% and the individual job response time
component to approach 86% for CPU service. See Figure 2 for the queuing reduction differences.

Logbuffer_Queueing21.doc Page 10
Version 2.1, December 10, 2004

In terms of redo configuration, it appears that RAID 1 devices, with the 128 MB of RAID array
cache provided by the PowerVault 220s, and mounted as ext3 file systems with synchronous I/O
are capable of supporting a maximum of about 400 commits/sec. This translates into an average
service time of about 2.5 milliseconds. This results in an effective load rate of approximately 94K
entities/minute. At this rate the CPUs are not at full utilization and the system is achieving
approximately a 94% utilization rate3. See test 7 for these details. In order to achieve the additional
6% utilization it will require redo logging to solid state disk4. This will reduce the average duration of
a "log file sync" low enough to reduce the queueing effects at the necessary arrival rate. If the "log
file sync" service rate is not reduced, then adding more CPUs will only make the problem worse, not
better. Figure 3 illustrates this phenomenon. If additional CPUs are added, the arrival rate of new
work will move the system to the far right of the performance curve knee. The ability to meet the
response time goal moves from 60% satisfaction to only 28% satisfaction. The reason our response
time goal is only 60% satisfaction is that I based the response time on a commit rate to achieve
100K entities per minute. Since we can only achieve this with solid state disk, even our "best" disk
solution cannot satisfy our response time goal.

In order to increase the single instance commit throughput, the log file sync service time must be
reduced below a 2.5 milliseconds average service rate.

3 This figure was derived by using the maximum rate obtained with RAM disk redo logs as the maximum rate possible (e.g. 100%
utilization).

4 Clearly using RAM disks is not an acceptable production solution. Since RAM disks reside in volatile system memory they cannot
preserve the online redo log files in the event of a memory or machine failure and therefore we cannot guarantee recovery from
instance failure.

Logbuffer_Queueing21.doc Page 11
Version 2.1, December 10, 2004

Queueing Theory Multiserver Model
M/M/m 3.1e (2003/03/11)

Copyright © 1999-2003 by Hotsos Enterprises, Ltd. All rights reserved

name valuea valueb unit description

jobunit workload unit (singular)

timeunit time unit (singular)

queueunit queue unit (singular)

serverunit service channel unit (singular)

serviceunit service unit

throughputunit throughput unit

λ 397 422 commit/sec average arrival rate into the system

r max 0.0025 0.0025 sec/commit maximum tolerated response time

q 1 1 instance number of instances

m 1 1 log file sync/instancenumber of log file syncs per instance

µ 769 1050 commit/sec average service rate

color code � — graph color and shape code

model 1 x M/M/1 1 x M/M/1 Kendall notation

ρ 51.6% 40.2% average utilization per log file sync

S 0.001300 0.000952 sec/commit average service time

W 0.001387 0.000640 sec/commit average queueing delay at specified λ
R 0.002687 0.001592 sec/commit average response time at specified λ
CDF (r max) 60.567% 79.195% satisfactions % of jobs with R ≤ r max at specified λ
1 - CDF (r max) 39.433% 20.805% dissatisfactions % of jobs with R > r max at specified λ

λ0 commit/sec arrival rate axis minimum value

λ1/max(λa, λb) ratio of λ1 to max(λa, λb)

λ1 commit/sec arrival rate axis maximum value

λ∆ commit/sec average arrival rate increment25.32

Performance forecasts

0

1.2

506.4

Units of measure

Service level agreements

Graph parameters

Architecture

log file sync

sec/commit

commit/sec

commit

sec

instance

Response Time = Service Time + Queueing Delay

0.000

0.001

0.001

0.002

0.002

0.003

0.003

0.004

0.004

0 51 10
1

15
2

20
3

25
3

30
4

35
4

40
5

45
6

50
6

Average arrival rate

A
ve

ra
ge

 r
es

po
ns

e
tim

e

Figure 2. Redo logs on RAID 1, ext3 file system, synchronous I/O vs. RAM disks

Logbuffer_Queueing21.doc Page 12
Version 2.1, December 10, 2004

Queueing Theory Multiserver Model
M/M/m 3.1e (2003/03/11)

Copyright © 1999-2003 by Hotsos Enterprises, Ltd. All rights reserved

name valuea valueb unit description

jobunit workload unit (singular)

timeunit time unit (singular)

queueunit queue unit (singular)

serverunit service channel unit (singular)

serviceunit service unit

throughputunit throughput unit

λ 397 636 commit/sec average arrival rate into the system

r max 0.0025 0.0025 sec/commit maximum tolerated response time

q 1 1 instance number of instances

m 1 1 log file sync/instancenumber of log file syncs per instance

µ 769 769 commit/sec average service rate

color code � — graph color and shape code

model 1 x M/M/1 1 x M/M/1 Kendall notation

ρ 51.6% 82.7% average utilization per log file sync

S 0.001300 0.001300 sec/commit average service time

W 0.001388 0.006218 sec/commit average queueing delay at specified λ
R 0.002688 0.007519 sec/commit average response time at specified λ
CDF (r max) 60.545% 28.287% satisfactions % of jobs with R ≤ r max at specified λ
1 - CDF (r max) 39.455% 71.713% dissatisfactions % of jobs with R > r max at specified λ

λ0 commit/sec arrival rate axis minimum value

λ1/max(λa, λb) ratio of λ1 to max(λa, λb)

λ1 commit/sec arrival rate axis maximum value

λ∆ commit/sec average arrival rate increment

Units of measure

Service level agreements

Graph parameters

Architecture

log file sync

sec/commit

commit/sec

commit

sec

instance

38.16

Performance forecasts

0

1.2

763.2

Response Time = Service Time + Queueing Delay

0.000
0.020
0.040
0.060
0.080
0.100
0.120
0.140
0.160
0.180
0.200

0 76 15
3

22
9

30
5

38
2

45
8

53
4

61
1

68
7

76
3

Average arrival rate

A
ve

ra
ge

 r
es

po
ns

e
tim

e

Figure 3. Commit throughput with increased workload.

Logbuffer_Queueing21.doc Page 13
Version 2.1, December 10, 2004

CPU Capacity

The testing also allowed some modeling of the theoretical maximums that could be expected from
both commit throughput and total CPU utilization based on the given configuration. From this
modeling, and the corresponding testing results, it would appear that the maximum possible
throughput is about 100,000 entities per minute for this four CPU machine. In achieving this rate
the CPUs are at their maximum utilization and the queuing of requests passes the "knee"5 in the
performance curve. See Figure 4 and the results of Test 7a.

It would appear though, that with a low enough service time for commits (e.g. using a solid state
disk) that a single system should continue to scale with the addition of more CPUs. Figure 5
illustrates the queuing affects of adding four additional physical processors (e.g. 8 logical processors
for a total of 16 CPUs in the model) if we assume that the system can support the additional commit
rate. The arrival rate of 423 was chosen since this is the number of commits per second that was
observed at our peak transaction rate of 100K entities/second. We see that if we double the number
of CPUs that we should be able to roughly double the number of commits per second to 846 and
therefore double the number entities per second that we can process. This of course ignores any
other bottlenecks that might show up as a result of the addition of more workload, but this option
may be more cost effective than other alternatives, and could help offset the cost of a solid state disk
device.

As a secondary note, the service rate of 69 commits per second was derived from the system wide
commits per second statistic obtained from Statspack. This value, when divided by the number of
jobs, provides an approximation of the commits per second per CPU occurring during the test(s).
As the number of jobs goes up, this value begins to go down, presumably due to the effects of
queueing. In the tests conducted this value didn't really change much between a 2 and 4 job test. In
the 9 job tests it did. If we follow the response time curve in Figure 3 however, this is not an
unexpected result. In the case of the value of 69, this is the value obtained from test 11b6, which
was the longer duration, and therefore probably more accurate, statistic collection for the 2 job test.
Notice that this is approximately the same value that is obtained from test 12a, and close to 12b,
which were taken from the 4 job test.

The question could be asked, how accurate is this? Can we really equate one of the load jobs to one
CPU's utilization? I believe the answer is yes, and the reasoning is fairly simple. Oracle "background"
processes (e.g. the server process for application connections) are single threaded. In the absence of
I/O, network, or internal database contention, an Oracle process will consume service time on a
single CPU. This is fairly simple to prove, and was observed during the testing. Single job tests
consumed roughly 80% of one CPU. This was verified using "top", sar and vmstat. In addition, the
run queue, as evidenced in sar and top was approximately 1. In other words, there was always one
process running. Occasionally a background process or the process doing the monitoring would slip
in, but from the operating system's perspective there was one process running consuming most of
one CPU. This was true for the 2 and 4 job tests as well, with load and run queues corresponding to
the number of jobs running. This is why I chose 9 jobs for the full load test. My expectation was

5 Optimizing Oracle Performance, Pg. 257

6 See Test Results for test details

Logbuffer_Queueing21.doc Page 14
Version 2.1, December 10, 2004

that to maximize throughput there should be some CPU queuing, and therefore CPU saturation, if
we could make the jobs efficient enough to be CPU bound. In fact, Oracle helped me confirm this
CPU saturation once we switched to RAM disks for the redo log files. One of the reasons that
extended SQL tracing was used as one of the test sources is that Oracle records all time used in a
session. In fact, it will record wall clock, or elapsed time as well. In the case of CPU saturation
however, there will be a difference between the elapsed time and the recorded time of the actions
performed in the session. In fact, the elapsed time will be greater than the Oracle "response" time.
This is due to the fact that Oracle does not perform timings unless it is running on a CPU or waiting
on some event. In the case of a process waiting to run on the operating system CPU queue, there
will be a discrepancy between the elapsed, or wall clock time, which will still be measuring time, and
the timings Oracle has made for the sessions actions. This is called "unaccounted-for" time by
Oracle, and others in the industry. In our case, the 9 job test with redo on RAM did in fact
experience unaccounted-for time. It experienced at least 3.8% of unaccounted-for time during the
test. See figure 6 for the details from the 7107 trace file.

Logbuffer_Queueing21.doc Page 15
Version 2.1, December 10, 2004

Queueing Theory Multiserver Model
M/M/m 3.1e (2003/03/11)

Copyright © 1999-2003 by Hotsos Enterprises, Ltd. All rights reserved

name valuea valueb unit description

jobunit workload unit (singular)

timeunit time unit (singular)

queueunit queue unit (singular)

serverunit service channel unit (singular)

serviceunit service unit

throughputunit throughput unit

λ 97.4 397.1 commits/sec average arrival rate into the system

r max 0.015 0.015 sec/commits maximum tolerated response time

q 1 1 system number of systems

m 8 8 CPU/system number of CPUs per system

µ 69 69 commits/sec average service rate

color code � — graph color and shape code

model 1 x M/M/8 1 x M/M/8 Kendall notation

ρ 17.6% 71.9% average utilization per CPU

S 0.014493 0.014493 sec/commits average service time

W 0.000000 0.001952 sec/commits average queueing delay at specified λ
R 0.014493 0.016445 sec/commits average response time at specified λ
CDF (r max) 64.477% 58.227% satisfactions % of jobs with R ≤ r max at specified λ
1 - CDF (r max) 35.523% 41.773% dissatisfactions % of jobs with R > r max at specified λ

λ0 commits/sec arrival rate axis minimum value

λ1/max(λa, λb) ratio of λ1 to max(λa, λb)

λ1 commits/sec arrival rate axis maximum value

λ∆ commits/sec average arrival rate increment23.826

Performance forecasts

0

1.2

476.52

Units of measure

Service level agreements

Graph parameters

Architecture

CPU

sec/commits

commits/sec

commits

sec

system

Response Time = Service Time + Queueing Delay

0.000

0.005

0.010

0.015

0.020

0.025

0 48 95 14
3

19
1

23
8

28
6

33
4

38
1

42
9

47
7

Average arrival rate

A
ve

ra
ge

 r
es

po
ns

e
tim

e

Figure 4 – CPU M/M/m queuing model

Logbuffer_Queueing21.doc Page 16
Version 2.1, December 10, 2004

Queueing Theory Multiserver Model
M/M/m 3.1e (2003/03/11)

Copyright © 1999-2003 by Hotsos Enterprises, Ltd. All rights reserved

name valuea valueb unit description

jobunit workload unit (singular)

timeunit time unit (singular)

queueunit queue unit (singular)

serverunit service channel unit (singular)

serviceunit service unit

throughputunit throughput unit

λ 423 846 commits/sec average arrival rate into the system

r max 0.015 0.015 sec/commits maximum tolerated response time

q 1 1 system number of systems

m 8 16 CPU/system number of CPUs per system

µ 69 69 commits/sec average service rate

color code � — graph color and shape code

model 1 x M/M/8 1 x M/M/16 Kendall notation

ρ 76.6% 76.6% average utilization per CPU

S 0.014493 0.014493 sec/commits average service time

W 0.003010 0.000908 sec/commits average queueing delay at specified λ
R 0.017502 0.015401 sec/commits average response time at specified λ
CDF (r max) 55.066% 61.617% satisfactions % of jobs with R ≤ r max at specified λ
1 - CDF (r max) 44.934% 38.383% dissatisfactions % of jobs with R > r max at specified λ

λ0 commits/sec arrival rate axis minimum value

λ1/max(λa, λb) ratio of λ1 to max(λa, λb)

λ1 commits/sec arrival rate axis maximum value

λ∆ commits/sec average arrival rate increment

Units of measure

Service level agreements

Graph parameters

Architecture

CPU

sec/commits

commits/sec

commits

sec

system

50.76

Performance forecasts

0

1.2

1015.2

Response Time = Service Time + Queueing Delay

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0

10
2

20
3

30
5

40
6

50
8

60
9

71
1

81
2

91
4

1,
01

5

Average arrival rate

A
ve

ra
ge

 r
es

po
ns

e
tim

e

Figure 5. The effects of adding 4 more physical CPUs (total of 16 logical processors)

Logbuffer_Queueing21.doc Page 17
Version 2.1, December 10, 2004

Interval Resource Profile
 ------------ Duration Per Call --------------
Response Time Component Duration # Calls Avg Min Max
----------------------------- --------------------- --------- ----------- ----------- -----------
CPU service 232.970000s 85.9% 211,800 0.001100s 0.000000s 4.720000s
log file sync 15.119163s 5.6% 9,493 0.001593s 0.000002s 0.058383s
unaccounted-for 10.224881s 3.8%
SQL*Net message from client 6.329329s 2.3% 360 0.017581s 0.000122s 0.294809s
buffer busy waits 3.891499s 1.4% 2,555 0.001523s 0.000001s 0.043668s
latch free 1.405972s 0.5% 437 0.003217s 0.000001s 0.032599s
enqueue 0.737749s 0.3% 442 0.001669s 0.000001s 0.021420s
SQL*Net more data from client 0.425094s 0.2% 6,403 0.000066s 0.000005s 0.024065s
SQL*Net message to client 0.019176s 0.0% 360 0.000053s 0.000001s 0.015493s
log file switch completion 0.018860s 0.0% 2 0.009430s 0.006020s 0.012840s
SQL*Net more data to client 0.007279s 0.0% 36 0.000202s 0.000021s 0.000897s
direct path read (lob) 0.003030s 0.0% 543 0.000006s 0.000000s 0.000337s
db file sequential read 0.001162s 0.0% 14 0.000083s 0.000045s 0.000109s
direct path write 0.001137s 0.0% 72 0.000016s 0.000000s 0.000160s
buffer deadlock 0.000109s 0.0% 37 0.000003s 0.000000s 0.000008s
----------------------------- --------------------- --------- ----------- ----------- -----------
Total 271.154440s 100.0%

Figure 6. Resource Profile showing unaccounted-for time.

Entity Throughput Scalability

As a final wrap up on scalability, two more questions come to mind. How was the entity per minute
rate affected as jobs were added, and how was the commit scalability affected? This might affect our
decision on how many CPUs to place in each server. Based on the test result data from the tests
with redo logs on RAID 1 volumes with ext3 file systems, synchronous I/O and write back cache
enabled on the array, I plotted the entities per minute and the commits per CPU per job for 2, 4 and
9 job tests (e.g. the blue bars). See figures 7 and 8. The results show that it takes only 4 jobs to load
66K entities/minute, but over twice that to get to 94K. The scalability is linear between 2 and 4 jobs,
but really falls off at 9. Unfortunately I should have run a 6 job test as well as an 8 job test to better
pinpoint queuing affects at higher load levels (e.g. the knee of the performance curve). By adding the
9 job redo on RAM disk data we still see a large drop off (e.g. the "9–RAM" bar). At 9 jobs we
know we were running to the right of the performance curve for commit rates for disk based redo
and CPU queuing for RAM based redo.

Logbuffer_Queueing21.doc Page 18
Version 2.1, December 10, 2004

0

20000

40000

60000

80000

100000

120000

Application Throughput

entities/minute 33237 65982 94390 100751

2 - Disk 4 - Disk 9 - Disk 9 - RAM

Figure 7. Entity throughput by number of jobs

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Commit Scalability

Commits/second per job 69.50 69.25 44.11 46.89

2 - Disk 4 - Disk 9 - Disk 9 - RAM

Figure 8. Commits per second per CPU

Logbuffer_Queueing21.doc Page 19
Version 2.1, December 10, 2004

Additional Issues

Single Job Tests

A couple of anomalies occurred during testing that I don't have answers for. The first was the issue
with one job tests. In all of the one job tests, commit rates were twice what two job tests were.
Based on the resource profiles for the single vs. two job tests, I do not believe that this can be
explained as contention within the database. Something else was happening that I haven't figured
out. Interestingly enough, all the other tests seem to fall pretty much where you would expect in
relation to each other (e.g. 2, 4, 9 jobs tests).

Raw Log File Throughput

In most UNIX systems, raw log file throughput will exceed that of file system throughput.
Specifically, buffered file system throughput. This is due to the fact that Oracle writes redo log files
in operating size blocks rather than file system sized blocks. In Linux this means that Oracle writes
512 byte blocks instead of 4K blocks. Normally, Oracle does not write 8 512 byte blocks every time
it writes to the redo log files. During the tests performed, the average write size was twenty 512 byte
blocks which means that Oracle was writing 2.5 file system size blocks every time a commit
occurred. Since the operating system can't write half a block, it has to read in the third block in this
case, modify the data, and write it back out. With a raw file the operating system just writes 20
blocks. Normally the other advantage of raw file I/O is that the operating system can make use of
kernelized asynchronous I/O. Interestingly enough, none of this applied in the tests conducted, and
synchronous file system I/O to the redo log files was the hands down performance winner.

Recommendations

Solid State Disk

Based on the workload and resource profile of the load jobs, using a solid state disk device for the
online redo log files increases the overall system throughput. During testing, the use of RAM disks
(e.g. simulated SSD) reduced the "log file sync" bottleneck considerably and provided a 6% boost in
entity per minute throughput. In the long term this will also "deheat" the storage array by removing
approximately half the total I/O, and this is foreground I/O (e.g. I/O that processes are directly
waiting for).

Physical Memory

The machine had 16 GB of memory. Oracle used approximately 1 GB of that memory. The rest was
used by processes, the OS, and the large majority by the UNIX file system cache. For this type of
workload this could be scaled back significantly. I would expect that 4 GB would be sufficient.

Scalability

As part of the initial scope of this project, the question of what it would take to scale to even higher
throughput requirements was asked. I believe that there are a couple of answers or guidelines that

Logbuffer_Queueing21.doc Page 20
Version 2.1, December 10, 2004

could be followed. The first is that each server should have as many CPUs, and therefore load jobs
on an approximate one to one basis, as the commit service rate can support. In our examples, this
would be approximately 8 CPUs using disk based log files that can support an approximate service
time of 2.5 ms. Even better, if solid state disk is used then even more CPUs/jobs could be
supported and in the tested configuration all of the CPU capacity could be maximized.

In order to scale above the 94K – 100K entity/minute rate, the next logical step would be to try
Oracle's Real Application Cluster (RAC) technology. Since the bottleneck(s) revolve around the
commit rate and CPU service rate, and since these are instance wide limitations within Oracle, it
makes since that adding additional instances should add additional scalability. At some point other
bottlenecks will probably occur, but certainly this should allow for the additional load rate scaling of
a single database loader.

Logbuffer_Queueing21.doc Page 21
Version 2.1, December 10, 2004

Parameter Settings

init.ora Settings

System parameters with non-default values:

 processes = 150
 timed_statistics = TRUE
 shared_pool_size = 218103808
 large_pool_size = 33554432
 java_pool_size = 83886080
 nls_language = AMERICAN
 nls_territory = AMERICA
 nls_sort = BINARY
 nls_date_format = MM/DD/YYYY
 nls_numeric_characters = .,
 nls_timestamp_format = YYYY-MM-DD"T"hh24:mi:ss.ff
 disk_asynch_io = FALSE
 tape_asynch_io = TRUE
 control_files = /ora01/oradata/SID/control01.ctl,
 /oracle/oradata/SID/control02.ctl,
 /ora01/oradata/SID/control03.ctl
 db_block_buffers = 204800
 db_block_size = 4096
 db_writer_processes = 1
 compatible = 9.2.0.0.0
 db_file_multiblock_read_count= 16
 fast_start_mttr_target = 300
 recovery_parallelism = 4
 control_file_record_keep_time= 21
 undo_management = AUTO
 undo_tablespace = UNDOTBS1
 undo_retention = 10800
 remote_login_passwordfile= EXCLUSIVE
 db_domain = dbdhs
 instance_name = DBAG
 service_names = DBAG.dbdhs
 serial_reuse = ALL
 session_cached_cursors = 200
 job_queue_processes = 10
 parallel_max_servers = 0
 hash_join_enabled = TRUE
 background_dump_dest = /oracle/admin/SID/bdump
 user_dump_dest = /oracle/admin/SID/udump
 core_dump_dest = /oracle/admin/SID/cdump
 optimizer_features_enable= 9.2.0
 db_name = DBAG
 open_cursors = 300
 optimizer_mode = CHOOSE
 star_transformation_enabled= FALSE
 optimizer_max_permutations= 2000
 optimizer_index_cost_adj = 50
 optimizer_index_caching = 80
 query_rewrite_enabled = TRUE
 query_rewrite_integrity = TRUSTED
 pga_aggregate_target = 209715200
 workarea_size_policy = AUTO
 aq_tm_processes = 1

Logbuffer_Queueing21.doc Page 22
Version 2.1, December 10, 2004

References

Note: 34592.1, WAITEVENT: "log file sync" Reference Note, 11-NOV-2002, Oracle Corporation

Hotsos Profiler, Hotsos Enterprises, Ltd., www.hotsos.com

Optimizing Oracle Performance, September 2003, Cary Millsap with Jeff Holt, O'Reilly

Oracle File System Integration and Performance, January 2001, Richard McDougall, Sriram Gummuluru,
Sun Microsystems

Evaluation of VERITAS File System to Enhance Oracle RDBMS Performance, Version 1.0, August 23,
1999, Roby Sherman

File System Performance White Paper, Part 1, 1996, VERITAS Software Corporation

File System Performance White Paper, Part 2, 1996, VERITAS Software Corporation

File System Performance White Paper, Part 3, 1996, VERITAS Software Corporation

Tips and Techniques: Install and Configure Oracle9i on Red Hat Linux Advanced Server, An Oracle White
Paper, August 2002, Oracle Corporation

Tuning Oracle Database Server and Linux, Part 1, Bert Scalzo, Quest Software

Tuning an Oracle8i Database Running Linux, Part 2, Bert Scalzo, Quest Software

LINUX Maximus Part 2: The RAW Facts on File Systems, Bert Scalzo, Quest Software

